

Doppler Shift Based Opportunistic LEO-PNT With Starlink Signals

Winfried Stock

IEEE LEO Sats Workshop: LEO Position, Navigating, and Timing (PNT) 5 May 2025

Opportunistic LEO-PNT

- (Unmodified) LEO satellites transmit communication signals
- PNT estimation at the receiver based on
 - Observation of the communication signals (as "signals of opportunity")
 - Satellite orbit

- ✓ No additional (PNT) satellites required
- ✓ Approach for complementary PNT in case of interruption or degradation of GNSS
- √ Global coverage

Which sources of error are (most) relevant?

W. Stock, R. T. Schwarz, and A. Knopp, "Error Source Analysis for Doppler Shift Based Opportunistic LEO-PNT With Starlink Signals," 2025 IEEE/ION Position, Location and Navigation Symposium (PLANS), Salt Lake City, UT, April 2025.

Investigated scenario

The investigated scenario consideres a

- stand-alone
- static
- opportunistic LEO-PNT receiver, performing
- multi-epoch
- Doppler-shift measurements of
- Starlink signals, leveraging
- consecutive Primary Synchronization
 Sequences (PSS).

Satellite orbit error

Clock errors (Satellite and receiver)

Atmospheric errors

Modified Cramér-Rao Bound

$$MCRB(\nu) = \frac{3T_s}{(T_s L_0)^3 2\pi^2} \frac{1}{SNR_r}$$

Impact on positioning accuracy:

using 300/100/10 consecutive PSSs

Satellite orbit error

Clock errors (Satellite and receiver)

Atmospheric errors

Monte-Carlo-Simulation of a single satellite passover

	Orbit error		
Scenario	along	cross	radial
3 NORAD TLE files	$2\mathrm{km}$	200 m	200 m
2 adjusted TLE files	$200\mathrm{m}$	$200\mathrm{m}$	$200\mathrm{m}$
1 precise TLE files	$10\mathrm{m}$	$10\mathrm{m}$	$10\mathrm{m}$

Impact on positioning accuracy:

Satellite orbit error

Clock errors
(Satellite and receiver)

Atmospheric errors

Short-term clock stability

$$\sigma_{f,clock} = rac{2\pi}{2.25 \cdot 2\pi T_c} \sigma_y(au) au f_c$$

relationship for a 3rd order PLL

assumed Allan deviations

Clock	$\sigma_y(au)$		
TCXO	$1 \cdot 10^{-9} \ \tau^{-\frac{1}{2}}$		
CSAC	$3 \cdot 10^{-10} \ \tau^{-\frac{1}{2}}$		
OCXO	$1 \cdot 10^{-12}$		

Impact on positioning accuracy:

using 300/100/10 consecutive PSSs

Satellite orbit error

Clock errors (Satellite and receiver)

Atmospheric errors

Ionospheric delay rate

Tropospheric delay rate

Literature (GNSS)

How to estimate the frequency of the signal most accurately

and

computationally efficient?

W. Stock, C. A. Hofmann and A. Knopp, "Correlation-Based Doppler Shift Estimation for Opportunistic LEO-PNT With Starlink Signals," 2024 IEEE International Conference on Wireless for Space and Extreme Environments (WiSEE), Daytona Beach, FL, USA, Dec. 2024.

- Computationally efficient algorithm
- for Starlink Primary Synchronization Sequence (PSS)
- detection and frequency estimation
- for Doppler-shift based opportunistic LEO-PNT

Starlink Primary Synchronization Sequence (PSS)

T. E. Humphreys, P. A. Iannucci, Z. M. Komodromos and A. M. Graff, "Signal Structure of the Starlink Ku-Band Downlink," in IEEE Transactions on Aerospace and Electronic Systems, vol. 59, no. 5, pp. 6016-6030, Oct. 2023, doi: 10.1109/TAES.2023.3268610.

Correlation-based PSS detection

correlation with PSS

$$r_{c,s}[l] = \sum_{n=0}^{L_c} c[n] s^*[n-l]$$

correlation with subsequence of PSS

$$r_{\dot{c},s}[l] = \sum_{n=0}^{L_{\dot{c}}} \dot{c}[n] s^*[n-l]$$

Higher correlation gain

VS.

resilience to Doppler shift misalignment

correlation with subsequence of PSS

$$r_{\dot{c},s}[l] = \sum_{n=0}^{L_{\dot{c}}} \dot{c}[n]s^*[n-l]$$

algorithm

$$R[m] = \frac{1}{L_0 - m} \sum_{k=m}^{L_0 - 1} z[k] \cdot z^*[k - m]$$
 with $1 \le m \le L_0 - 1$

$$\hat{f}_D = \frac{1}{5\pi T_s L_{\dot{c}}} \arg \left\{ \sum_{m=1}^4 R[m] \right\}$$

 $\mathrm{RMSE}(\hat{f}_D)$ of the Doppler shift estimation for different SNRs

Probability that the PSS is detected correctly

 $RMSE(\hat{f}_D)$ for different Doppler shifts f_D and $SNR = 10 \, dB$

 $\mathrm{RMSE}(\hat{f}_D)$ for different sample timing offsets $\Delta \tau$ and $\mathrm{SNR} = 10\,\mathrm{dB}$

Applicability

 $\mathrm{RMSE}(\hat{f}_D)$ of the Doppler shift estimation for different SNRs

$$SNR_T = -11 dB$$

Algorithm works efficiently for

$$SNR_T \ge -11 \, dB$$

 SNR with isotropic radiator as receiver antenna

$$SNR_R = -20.9 \, dB$$

Margin M

Required receiver antenna gain

$$G_R = SNR_T + M - SNR_R$$

Thank you!

Technologieforschung der Bundeswehr

W. Stock, R. T. Schwarz, C. A. Hofmann and A. Knopp, "Survey On Opportunistic PNT With Signals From LEO Communication Satellites," in IEEE Communications Surveys & Tutorials

