

# Precise Orbit Determination: A Requirement for LEO-PNT Systems

Dr. Amir Allahvirdi-Zadeh

**IEEE LEO Sats Workshop - May 2025** 



#### PNT in Challenging Environments (Only GNSS)



## What is going on in the low-Earth orbit (LEO) region?



- Space Proliferation!
- ➤ LEO region: ~500-1200 km

**How many** satellites do you think we have in LEO region?



# What is going on in low-Earth orbit (LEO) region?



Major LEO Satellite Constellations

| Constellation | Company         | Current<br>Satellites (est.) | Planned Total | Status                  |
|---------------|-----------------|------------------------------|---------------|-------------------------|
| Starlink      | SpaceX          | >7,000                       | 42,000        | Operational & expanding |
| OneWeb        | OneWeb/Eutelsat | ~630                         | 648           | Nearly complete         |
| Kuiper        | Amazon          | -                            | >3,000        | Early deployment        |
| GuoWang       | China SatNet    | 10                           | ~13,000       | Early deployment        |
| Iridium NEXT  | Iridium         | 66                           | 66            | Complete                |
| Globalstar    | Globalstar      | 25                           | 25            | Complete                |

~8,000 **Satellites** 

60,000+ **Satellites** by 2030

#### **Future of space-based PNT**

**GNSS Limitations** 

+

Constellations in LEO (Dedicated for PNT or Broadband)



**LEO-PNT** systems

We are developing models for precise PNT for such constellations

(Satellite and User sides)



#### Let's start with the satellite side models in LEO-PNT systems

#### It is critical to know the exact positions of LEO satellites in space (in real time!)



Basics of satellite-based positioning:



Pseudorange: 
$$\rho = \sqrt{(X_S - X_P)^2 + (Y_S - Y_P)^2 + (Z_S - Z_P)^2} + c(dt_r - dt^S) + b$$

(Orbit Determination) 

Known: Satellites orbits and clocks  $(X_s, Y_s, Z_s, dt^s)$ 

Unknown: User positions and clock offset  $(X_P, Y_P, Z_P, dt_r)$ 

Higher orbital accuracy **Higher positioning accuracy** 

We need Precise Orbit Determination (POD)

i.e., Orbital accuracy at several cm levels



#### **Precise Orbit Determination (POD) of LEO satellites**

#### **Kinematic POD:**

- Based on Precise Point Positioning (PPP)
- Sensitive to the outliers
- No observation → No orbit
- Bad observation → Low orbital accuracy

#### **Reduced-Dynamic POD**

- Based on solving the equation of motion
- Integrating with the GNSS observations
- Estimating stochastic accelerations to compensate for dynamic model deficiencies
- Continuous and more accurate orbit
- Cumbersome processing



Postmission POD? real-time/ onboard POD?

#### **Post-mission POD**



**Assumption:** We have access to the onboard GNSS observation of LEO satellites

- The most accurate POD mode
- Needs to send data to the ground stations
- Users will receive orbits and clocks through the Internet or Space links

(Near Real-Time Output + Orbit and Clock Predictions)























#### Post-mission POD: Orbital accuracy for various LEO missions

| Mission        | Accuracy (cm) | Reference                                                  |  |
|----------------|---------------|------------------------------------------------------------|--|
| СНАМР          | <2.7          | (Švehla and Rothacher 2005)                                |  |
| GRACE A&B      | <3.0          | (Jäggi et al. 2007)                                        |  |
| GOCE           | <2.3          | (Bock et al. 2011)                                         |  |
| Swarm-A&B&C    | <5            | (Jäggi et al. 2016) (Van Den Ijssel et al. 2015)           |  |
| Fengyun-3C     | 3.4           | (Li et al. 2017)                                           |  |
| TG02           | 3.5           | (Li et al. 2018)                                           |  |
| Sentinel 1-A&B |               |                                                            |  |
| Sentinel 2-A&B | 1.5           | (Peter et al. 2017, Fernández et al. 2018, Fernández 2019) |  |
| Sentinel 3-A&B |               |                                                            |  |
| GRACE-FO C&D   | 1.5           | (Kang et al. 2020)                                         |  |
| Spire CubeSats | <10           | (Allahvirdi-Zade 2023)                                     |  |

#### Post-mission POD: Clock stability issue



#### **Real-time/onboard LEO POD**

#### **Everything is done onboard**

The estimated orbits will be sent to the users as part of the transmitted signals

#### **Challenges:**

- Needs GNSS corrections in space
- Limited power and processing budget
- Commercial Off-the-Shelf (COTS)
   Sensors
- Inter-satellite links



#### Real-time LEO POD: GNSS corrections in space (space links)





**Galileo High Accuracy Service (HAS)** 

AU/NZ SBAS (SouthPAN)

Other space links: MADOCA (QZSS), Commercial Companies

### Real-time LEO POD: GNSS corrections in space



#### LEO satellites operate under various constraints:

Applying different duty cycles (%); storing GNSS observations with lower sample intervals.

KIN POD using SouthPAN products

24



#### Real-time LEO POD: Commercial Off-the-Shelf (COTS) Sensors

Sensor quality directly impacts orbital accuracy





#### Magnetometers



Low accuracy (1°)

#### **Sun Sensor**



- Works only in sunlight
- Low accuracy (0.5°)

#### **Star Tracker**



- Price: ~ \$45k

- Weight: 275 g

**Zoomed To Panel** 

- ✓ **Slighter** than other attitude sensors: ~45 g
- ✓ Less power requirement: ~0.1 W
- ✓ Cheaper: ~\$4K

Small Satellite (CubeSat)

✓ Using our model, it is more precise!

We developed models to reach higher accuracy for attitude and orbits of satellites



$$E(P_r) = \left(e_f^T \otimes \left[\left(g_r^{1s}\right)^T, \dots, \left(g_r^{ms}\right)^T\right]^T\right) b_r + \left(\left[\mu_1, \dots, \mu_f\right]^T \otimes I_{m-1}\right) i_r + \varepsilon_{P_r}$$

$$E(\Phi_r) = \left(e_f^T \otimes \left[\left(g_r^{1s}\right)^T, \dots, \left(g_r^{ms}\right)^T\right]^T\right) b_r - \left(\left[\mu_1, \dots, \mu_f\right]^T \otimes I_{m-1}\right) i_r + \left(diag\left[\lambda_1, \dots, \lambda_f\right] \otimes I_{m-1}\right) z_r + \varepsilon_{\Phi_r}$$

#### **Explained in the paper:**

Allahvirdi-Zadeh, A., & El-Mowafy, A. (2024). **Array-Aided Precise Orbit** and **Attitude Determination** of CubeSats using GNSS. *NAVIGATION*: Journal of the Institute of Navigation, 71(3).;



https://doi.org/10.33012/navi.651

$$\begin{split} E\Big(vec\big[\overline{y},Y\big]\Big) &= vec\Big(A\big[\overline{z},Z\big] + G\Big[\overline{b},RB_0\Big] + \big[d_r,0\big]\Big), \quad Z \in \mathbb{Z}^{f(m-1)\times(a-1)}, \quad R \in O^{3\times q} \\ Q_{vec\big[\overline{y},Y\big]} &= blkd\Big[\Big(e_aQ_r^{-1}e_a^T\Big)^{-1}, D_{a-1}Q_rD_{a-1}^T\Big] \otimes \Big(Q_f \otimes blkd\Big[D_{m-1}Q_pD_{m-1}^T, D_{m-1}Q_{\varphi}D_{m-1}^T\Big]\Big) \end{split}$$



#### **Orbit Results**

| OBSERVATIONS          | 3D RMSE (M)        |
|-----------------------|--------------------|
| ONE ANTENNA           | 0.118              |
| A-POD WITH 4 ANTENNAE | <mark>0.041</mark> |

✓ Orbits and attitude of the satellites are improved

**Using our model** 

**Using Magnetometer and sun sensors** 

#### Real-time LEO POD: Inter-satellite links

Small satellites face significant challenges in Real-Time LEO POD:

- Limited power and CPU,
- COTS sensors quality,
- Unstable oscillator, etc.



**Augmenting POD with precise inter-satellite ranges** 

- Meet the power and computational expectations
- Reduced the impact of the receiver-dependent errors
- Strengthen the model

Real-Time sub-meter accuracy achievable for CubeSats
Several cm levels are achievable for LEO satellites



#### **User-side Models for Broadband LEO-PNT Systems**

We developed Dopplershift-based PNT models for the next generation of PNT systems

Multi-frequency Multi-Constellation models for absolute and relative positioning in the urban area



#### Doppler Shift Multi-frequency Multi-Constellation model (MF-MC)

$$-\lambda_f D_r^s = \begin{bmatrix} \hat{e}_r^s(t) \cdot \left(v_r(t) - R \ v^s(t-\tau)\right) \left(\frac{1 + c\delta \dot{t}^s}{1 - \frac{1}{c} \, \hat{e}_r^s(t) \cdot \left(R v^s(t-\tau) - \left(\Omega_e \times R r^s(t-\tau)\right)\right)} \right) \\ + c(\delta \dot{t}_r - \delta \dot{t}^s) + \dot{T}_r^s - \dot{I}_{r,f}^s \end{bmatrix} (1 + \delta \dot{t}_r)^{-1}$$

NAVIGATION. https://doi.org/10.33012/navi.691

Explained in the paper: 
$$u_r = e_f^T \otimes \begin{bmatrix} \hat{e}_r^1 \cdot (v_r - Rv^1) \left( \frac{1 + c\delta \dot{t}^1}{1 - \frac{1}{c} \, \hat{e}_r^1 \cdot (Rv^1 - (\Omega_e \times Rr^1))} \right), \dots, \end{bmatrix}^T \\ \text{Allahvirdi-Zadeh, A., & El-Mowafy, A., Wang K., (2025).} \\ \text{Doppler Positioning Using Multi-Constellation LEO} \\ \text{Satellite Broadband Signals as Signals of Opportunity.} \\ NAVIGATION. & & https://doi.org/10.33012/navi.691 \\ \end{bmatrix} (1 + \delta \dot{t}_r)^{-1} \\ \hat{e}_r^m \cdot (v_r - Rv^m) \left( \frac{1 + c\delta \dot{t}^m}{1 - \frac{1}{c} \, \hat{e}_r^m \cdot (Rv^m - (\Omega_e \times Rr^m))} \right)^T (1 + \delta \dot{t}_r)^{-1} \\ \hat{t}_r = e_f^T \otimes [\dot{t}_r^1, \dots, \dot{t}_{r,f}^m]^T \text{ where } \dot{t}_{r,f} = [\dot{t}_{r,f}^1, \dots, \dot{t}_{r,f}^m] (1 + \delta \dot{t}_r)^{-1} \\ \hat{e}_{D_r} = e_f^T \otimes [\varepsilon_{D_r^1}, \dots, \varepsilon_{D_r^m}]^T \end{bmatrix}^T$$

**Absolute Mode:** 

$$E(D_r) = u_r + \delta \dot{t} + \dot{T}_r - \dot{I}_r$$

$$Q_{D_r} = diag(\varepsilon_{D_r})$$

**Differential Mode:** 

$$E(\Delta D) = \Delta u = \begin{pmatrix} s_2 u - \frac{s_2}{r_1} u - \frac{s_1}{r_2} u \end{pmatrix} - \begin{pmatrix} s_1 u - \frac{s_1}{r_2} u \end{pmatrix}$$
$$Q_{\Delta D} = diag(\varepsilon_{\Delta D})$$

#### **Limitations of Broadband Signals**

- 1) Broadband Signals are not continuous
- 2) Signals are unavailable in low elevation angles
- 3) There are some restrictions on sending signals from more than one satellite to the user in each cell
- 4) There is no multi-constellation receiver

We simulate Starlink, OneWeb, and Iridium constellations







#### Positioning results: Positioning using ONLY Broadband Constellations

| RECEIVER         | LIM. TYPE   | X RMSE (M) | Y RMSE (M) | Z RMSE (M) | 3D RMSE (M) |
|------------------|-------------|------------|------------|------------|-------------|
|                  | No limit    | 1.92       | 1.66       | 2.84       | 3.81        |
| Absolute<br>Mode | Elv Angle   | 2.19       | 1.33       | 3.05       | 3.98        |
|                  | Elv + Burst | 2.53       | 2.63       | 3.15       | 4.83        |

| RECEIVER      | LIM. TYPE   | X RMSE (M) | Y RMSE (M) | Z RMSE (M) | 3D RMSE (M) |
|---------------|-------------|------------|------------|------------|-------------|
|               | No limit    | 0.30       | 0.23       | 0.28       | 0.47        |
| Diff.<br>Mode | Elv Angle   | 0.32       | 0.29       | 0.30       | 0.53        |
| Mode          | Elv + Burst | 0.34       | 0.38       | 0.34       | 0.62        |

We developed the Network-based precise orbit determination of broadband LEO satellites using Doppler-shift measurements





#### If:

- The satellite orbits are at the sub-dm level of accuracy
- More than one satellite is trackable by a user
- If a multi-constellation receiver is available

#### **Conclusions**

- Without LEO POD, we cannot expect high accuracy from LEO-PNT systems
- > LEO POD is highly affected by the satellite constraints, models, processing budget, and sensor quality
- Mega constellations have different challenges for real-time POD in orbit/clock estimation and predictions
- Scientists are developing the models and overcoming the challenges.
- There are many open areas to research (especially in the POD of mega constellations).

**Remaining question**: Will constellation owners recognize the opportunity to expand their services and their revenue streams?

# Thanks for your attention





Amir.Allahvirdizadeh@curtin.edu.au